Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
BMC Oral Health ; 24(1): 455, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622680

ABSTRACT

BACKGROUND: The aim of this study is to evaluate the biomechanical behavior of the mesial and distal off-axial extensions of implant-retained prostheses in the posterior maxilla with different prosthetic materials using finite element analysis (FEA). METHODS: Three dimensional (3D) finite element models with three implant configurations and prosthetic designs (fixed-fixed, mesial cantilever, and distal cantilever) were designed and modelled depending upon cone beam computed tomography (CBCT) images of an intact maxilla of an anonymous patient. Implant prostheses with two materials; Monolithic zirconia (Zr) and polyetherketoneketone (PEKK) were also modeled .The 3D modeling software Mimics Innovation Suite (Mimics 14.0 / 3-matic 7.01; Materialise, Leuven, Belgium) was used. All the models were imported into the FE package Marc/Mentat (ver. 2015; MSC Software, Los Angeles, Calif). Then, individual models were subjected to separate axial loads of 300 N. Von mises stress values were computed for the prostheses, implants, and bone under axial loading. RESULTS: The highest von Mises stresses in implant (111.6 MPa) and bone (100.0 MPa) were recorded in distal cantilever model with PEKK material, while the lowest values in implant (48.9 MPa) and bone (19.6 MPa) were displayed in fixed fixed model with zirconia material. The distal cantilever model with zirconia material yielded the most elevated levels of von Mises stresses within the prosthesis (105 MPa), while the least stresses in prosthesis (35.4 MPa) were recorded in fixed fixed models with PEKK material. CONCLUSIONS: In the light of this study, the combination of fixed fixed implant prosthesis without cantilever using a rigid zirconia material exhibits better biomechanical behavior and stress distribution around bone and implants. As a prosthetic material, low elastic modulus PEKK transmitted more stress to implants and surrounding bone especially with distal cantilever.


Subject(s)
Dental Implants , Zirconium , Humans , Finite Element Analysis , Maxilla/surgery , Dental Prosthesis, Implant-Supported , Dental Stress Analysis/methods , Stress, Mechanical
2.
Article in English | MEDLINE | ID: mdl-38629760

ABSTRACT

OBJECTIVES: This study investigates effects of surgical guide manufacturing process on 3D transfer accuracy of planned dental implant position, using three production methods: additive 3D-printed (3DF), subtractive milled (MF), and analog laboratory fabricated templates (LF). MATERIAL AND METHODS: Implant position for a single-tooth gap (#26) planned digitally. 3DF and MF templates were designed digitally, while LF templates were analogously created. For each manufacturing type, 10 surgical guides were fabricated. Each guide was used for template-guided implant placement in model replicas. For evaluation of implant placement, cone beam computed tomography scans of all implanted models were superimposed, and implant positions were determined. Deviations at implant shoulder/apex were measured, and median and inter-quartile range (IQR) were determined for mesio-distal, oro-facial, coronal apico, 3D spaces, and angles. RESULTS: At implant shoulder, vertical components dominated position deviations (up to 1.04 mm, IQR 0.28 mm for 3DF). Horizontal deviations were much lower (mesio-distally up to 0.38 mm, IQR 0.36 mm (LF)). Implant apex shows similar vertical deviations, while horizontal deviations clearly increased compared to shoulder, especially in mesio-distal direction. Median angular deviations were between 2.1° (IQR 2.0 mm, max. 4.2°) for 3DF and 3.3° (IQR 1.9 mm, max. 5.3°) for MF. No statistical differences were found between manufacturing types (Kruskal-Wallis test, p = .05). CONCLUSIONS: The study showed the method of implant guide fabrication did not affect the accuracy of implant placement within the limits of an in vitro environment. All methods resulted in implant placement which did not exceed the accepted safety deviation envelope (1.5-2.0 mm).

3.
J Orofac Orthop ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653792

ABSTRACT

PURPOSE: The aim was to investigate the effect of aging by thermocycling and mechanical loading on forces and moments generated by orthodontic clear aligners made from different thermoplastic materials. METHODS: A total of 25 thermoformed aligners made from 5 different materials, i.e., Essix ACE® and Essix® PLUS™ (Dentsply Sirona, Bensheim, Germany), Invisalign® (Align Technology, San Jose, CA, USA), Duran®+ (Iserlohn, Germany), Zendura™ (Fremont, CA, USA), underwent a 14-day aging protocol involving mechanical loading (a 0.2 mm vestibular malalignment of the upper left second premolar [tooth 25]) and thermocycling in deionized water (temperature range 5-55 °C). The 3D forces/moments exerted on tooth 25 of a resin model were measured at three time points: before aging (day 0), after 2 days and after 14 days of aging. RESULTS: Before aging, extrusion-intrusion forces were 0.6-3.0 N, orovestibular forces were 1.7-2.3 N, and moments as mesiodistal rotation were 0.3-42.1 Nmm. In all directions, multilayer Invisalign® exhibited the lowest force/moment magnitudes. After aging, all materials showed a significant force/moment decay within the first 2 days, except Invisalign® for orovestibular and vertical translation. However, following thermomechanical aging, Duran®+ and Zendura™ aligners had equivalent or even higher vestibular forces (direction of mechanical load). CONCLUSION: Thermomechanical aging significantly reduced forces and moments during the first 48 h. Multilayer aligner materials exhibit lower initial forces and moments than single-layer ones, and were less influenced by aging. Material hardening was observed after subjecting some of the aligner materials to mechanical loading. Thus, orthodontists should be aware of possible deterioration of orthodontic aligners over time. This work also sheds light on how material selection impacts the mechanical behavior of aligners and may provide valuable guidance regarding optimal timing for the aligner changing protocol.

4.
J Clin Med ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38592077

ABSTRACT

OBJECTIVES: Aligners are an effective and esthetic orthodontic treatment option for permanent and mixed dentition. There are only a few studies dealing with the effectiveness of orovestibular tooth movement using aligners and applying adequate examination methods. In the present retrospective study, the aligner efficiency of orovestibular movements for the entire dentition was systematically evaluated using 3D superimposition, taking into account the influence of jaw, tooth type and Invisalign® system. METHODS: Group 1 (n = 18 adults, Invisalign®) and Group 2 (n = 17 adolescents, Invisalign® Teen) were treated with Invisalign® Ex30 aligner material and Invisalign® specific auxiliary means. In this non-interventional retrospective study, pre- and post-treatment maxillary and mandibular plaster cast models were scanned and superimposed with ClinChecks® via Surface-Surface Matching Algorithm on unmoved teeth providing stable references. Effectivity of planned versus clinically realized movements was evaluated for each tooth. Statistics were performed with a t-test and Bonferroni-Holm correction (α = 0.05). RESULTS: Orovestibular movement efficiency was excellent without statistical significance regarding jaw, tooth type or Invisalign® system. Mandibular translational tooth movements were highly effective, and outstanding for premolars (91-98%). Maxillary translational tooth movements were successful for incisors and premolars, but less effective for canines and molars. Almost all teeth were moderately or very effectively corrected by crown tipping, performing better for mandibular (70-92%) than maxillary (22-31%) canines as much as for adolescent upper front teeth (81-85%) and lower canines (92%). CONCLUSIONS: Aligners are able to effectively implement translational orovestibular movements, supported by tilting the crowns for even more efficient implementation of the movements. This phenomenon was observed in our studies for all teeth in both jaws, regardless of the Invisalign® system used. Treatment planning should nevertheless take into account the individual patient parameters with regard to the movements to be performed in order to make the aligner therapy as successful as possible in terms of realizing the desired therapeutic goal.

5.
Orthod Craniofac Res ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459802

ABSTRACT

OBJECTIVES: To use the finite element method (FEM) to investigate the effect of various attachment configurations and trimming line designs of orthodontic aligners on their biomechanical performance. METHOD: A 3D upper jaw model was imported into 3D design software. The upper right central incisor tooth (Tooth 11) was made mobile, and its periodontal ligament (PDL) and bone structures were designed. Aligners were modelled with three distinct attachment configurations: No attachment, rectangular horizontal, rectangular vertical, and two trimming line designs; scalloped and straight extended, with a homogeneous thickness of 0.6 mm. These models were then imported into an FE software. Simulations were conducted for three different movements, including facial translation, distalization, and extrusion. RESULTS: Forces were recorded at 1.3-2.6 N during facial translation, 1.4-5.9 N in distalization, and 0.0-2.0 N in extrusion. The straight extended trimming line consistently generated higher forces than the scalloped design. Attachments had no significant impact on force components during facial translation but were more effective in distalization and extrusion. The combination of a straight extended trimming line with horizontal attachments exhibited the least stresses at the apical third during distalization, and the highest stresses during extrusion, suggesting superior retention. CONCLUSIONS: Rectangular attachments offer limited benefits in facial translation, but horizontal rectangular attachments can intensify load in distalization and are crucial for force generation in extrusion. Horizontal attachments are preferred over vertical options. Additionally, the straight extended trim line enhances control of tooth movement and can replace attachments in certain cases. CLINICAL RELEVANCE: These findings provide biomechanical evidence and an optimal protocol to guide clinical practice in planning diverse teeth movements. The emphasis is on the influence of attachment utilization and the specific design of aligner trimming lines to enhance control over tooth movement.

6.
J World Fed Orthod ; 13(2): 65-71, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395726

ABSTRACT

BACKGROUND: A finite element model was used to investigate the effect of different designs and thicknesses of orthodontic aligner margins on their biomechanical behavior. METHODS: A three-dimensional data set of an upper jaw was imported into the 3-matic software. The upper right central incisor tooth (Tooth 11) was separated from the remaining model, and its periodontal ligament and surrounding bone were designed. Aligners were designed with four different trimming lines (scalloped, straight, scalloped extended, straight extended), each with four different thicknesses (0.3, 0.4, 0.5, and 0.6 mm). The models were imported into a finite element package (Marc/Mentat). A linear elastic constitutive material model was applied. A facial 0.2 mm bodily malalignment of tooth 11 was simulated. RESULTS: The maximum resultant force was in the range of 1.0 N to 2.2 N. The straight trimming designs deliver higher resultant forces compared with scalloped trimming designs. Increasing the aligner thickness and/or extending the aligner edge beyond the gingival line leads to an increase in the resultant force. All designs showed an uneven distribution of the normal contact forces over the tooth surface with a predominant concentration toward the cervical third and distal third, particularly with the extended trimming designs. All designs showed uncontrolled tipping of the tooth. CONCLUSIONS: Based on the current model outcomes, the use of a straight extended trimming line design for aligners is favored because of its positive impact on force distribution and, consequently, the control of tooth movement. CLINICAL RELEVANCE: These findings provide aligner companies and orthodontists a valuable biomechanical evidence and guidance to enhance control over tooth movement and therefore optimize treatment outcomes. This can be achieved by trimming the edges of aligners with a straight extended design and selecting the appropriate aligner thickness.


Subject(s)
Mechanical Phenomena , Orthodontic Appliance Design , Finite Element Analysis , Software , Maxilla , Tooth Movement Techniques/methods
7.
J Orofac Orthop ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345616

ABSTRACT

PURPOSE: Using a commercial orthodontic treatment planning system, tooth movements were simulated to analyse how precise predefined movements can be determined by three different superimposition methods. Additionally, a retrospective analysis on clinical patient models before and after orthodontic treatment was performed to analyse possible differences in determination of clinical tooth movements with these methods. METHODS: (1) A hexapod system was used to perform the tooth movements in physical maxillary dental models (N = 70). The initial and final situations were scanned, superimpositions executed, movements calculated, and their accuracy compared to the predefined movements was determined. (2) Digital three-dimensional (3D) maxillary dental models representing pre- and postorthodontic treatment situations (N = 100 patients) were superimposed. Selected tooth movements were calculated (N = 3600), and the results of the different superimposition methods were compared pairwise. RESULTS: (1) The experimental study delivered only small location and scale shifts. Furthermore, concordance correlation coefficients above 0.99 for all three methods. This verified that all methods deliver values corresponding well to the predefined movements. (2) The retrospective analysis of the clinically performed orthodontic tooth movements comparing pairwise the three different methods intraindividually also showed small location and scale shifts. Furthermore, concordance correlation coefficients between 0.68 and 0.98 were observed, with only three of them below 0.8. This verified that the applied superimposition methods delivered values sufficiently close to each other. CONCLUSIONS: As the experimental study showed very good agreement between the predefined and determined movements, and as the retrospective clinical study showed that the methods compared pairwise delivered values close to each other for the performed orthodontic tooth movements, it can be concluded that orthodontic tooth movements can be determined adequately correct by each of the examined methods.

8.
BMC Oral Health ; 24(1): 99, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233794

ABSTRACT

BACKGROUND: While conventional threaded implants (TI) have proven to be effective for replacing missing teeth, they have certain limitations in terms of diameter, length, and emergence profile when compared to customised root analogue implants (RAI). To further investigate the potential benefits of RAIs, the aim of this study was to experimentally evaluate the micromotion of RAIs compared to TIs. METHODS: A 3D model of tooth 47 (mandibular right second molar) was segmented from an existing cone beam computed tomography (CBCT), and a RAI was designed based on this model. Four RAI subgroups were fabricated as follows: 3D-printed titanium (PT), 3D-printed zirconia (PZ), milled titanium (MT), milled zirconia (MZ), each with a sample size of n = 5. Additionally, two TI subgroups (B11 and C11) were used as control, each with a sample size of n = 5. All samples were embedded in polyurethane foam artificial bone blocks and subjected to load application using a self-developed biomechanical Hexapod Measurement System. Micromotion was quantified by analysing the load/displacement curves. RESULTS: There were no statistically significant differences in displacement in Z-axis (the loading direction) between the RAI group and the TI group. However, within the RAI subgroups, PZ exhibited significantly higher displacement values compared to the other subgroups (p < 0.05). In terms of the overall total displacement, the RAI group showed a statistically significant higher displacement than the TI group, with mean displacement values of 96.5 µm and 55.8 µm for the RAI and TI groups, respectively. CONCLUSIONS: The RAI demonstrated promising biomechanical behaviour, with micromotion values falling within the physiological limits. However, their performance is less predictable due to varying anatomical designs.


Subject(s)
Dental Implants , Humans , Titanium , Zirconium , Software
9.
Clin Oral Investig ; 27(10): 6125-6133, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37615777

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of cyclic mechanical loading on the fracture resistance of 3D-printed zirconia crowns in comparison to milled zirconia crowns. MATERIALS AND METHODS: Monolithic zirconia crowns (n = 30) were manufactured using subtractive milling (group M) and 3D additive printing (group P). Nine samples of each group were fractured under one-time loading while the other 6 samples were subjected to cyclic loading for 1.2 million cycles before being subjected to one-time loading until fracture. Scanning electron microscope (SEM) fractographic analysis was carried out on fractured fragments of representative samples. RESULTS: The mean for fracture resistance of group M was 1890 N without cyclic loading and 1642 N after being subjected to cyclic loading, and they were significantly higher than that of group P (1658 N and 1224 N respectively). CONCLUSIONS: The fabrication technique and cyclic loading affect the fracture resistance of zirconia crowns. Although the fracture resistance values for the 3D-printed crowns were lower than those of the milled, still they are higher than the masticatory forces and thus could be considered being clinically acceptable. CLINICAL RELEVANCE: Concerning fracture resistance, 3D-printed crowns can withstand the masticatory forces for the long term without any cracks or failure.

10.
J Mech Behav Biomed Mater ; 143: 105911, 2023 07.
Article in English | MEDLINE | ID: mdl-37207526

ABSTRACT

The aim of the study is to investigate the effects of artificial aging by thermocycling and mechanical loading on force/torque delivery by thermoplastic orthodontic aligners. Ten thermoformed aligners, made of Zendura™ thermoplastic polyurethane sheets, were aged over two weeks in deionized water by thermocycling alone (n = 5) and by both thermocycling and mechanical loading (n = 5). The force/torque generated on upper second premolar (Tooth 25) of a plastic model was measured before aging (as control), and after 2, 4, 6, 10, and 14 days of aging, using a biomechanical set-up. Before aging, the extrusion-intrusion forces were in the range of 2.4-3.0 N, the oro-vestibular forces were 1.8-2.0 N, and the torques on mesio-distal rotation were 13.6-40.0 Nmm. Pure thermocycling had no significant effect on the force decay of the aligners. However, there was a significant decrease in force/torque after 2 days of aging for both thermocycling and mechanical loading aging group, which is no longer significant over 14 days of aging. In conclusion, artificial aging of aligners in deionized water with both thermocycling and mechanical loading results in a significant decrease in force/torque generation. However, mechanical loading of aligners has a greater impact than pure thermocycling.


Subject(s)
Orthodontic Appliances, Removable , Tooth Movement Techniques , Torque , Tooth Movement Techniques/methods , Orthodontic Appliance Design , Water
11.
Clin Oral Investig ; 27(7): 3673-3682, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37017760

ABSTRACT

OBJECTIVES: Although a new super-quick setting polyether impression material has been commercially recently introduced, its properties have not been yet reported. Thus, it was the aim of this study to assess the dimensional stability, tear strength, and elastic recovery of the new material and to compare it with another commonly used polyether and polyvinyl siloxane. MATERIALS AND METHODS: A new super-quick set polyether, a regular set polyether and a polyvinylsiloxane (PVS) impression material have been used in the study. Dimensional changes were measured using a modified mold as per ISO 4823:2000 after 1 h and 7 days. Tear strength was evaluated by subjecting specimens to tension until failure with a crosshead speed of 250 mm/min. Elastic recovery was measured by deforming specimens using a materials testing machine to a height of 16 mm (20% strain). The change in length (ΔL) was measured afterwards and elastic recovery was calculated in percentages. RESULTS: Dimensional changes of the super quick and regular set polyether were comparable in both the vertical and horizontal dimensions after 24 h and 7 days. All the tested materials showed dimensional change values far below the maximum accepted ISO requirement (1.5%). The super quick setting polyether showed significantly improved tear strength (4.9 N/mm) in comparison to the regular set polyether (3.5 N/mm) and similar to PVS (5.2 N/mm). The elastic recovery of PVS (99.6%) was the highest among all the groups. CONCLUSIONS AND CLINICAL RELEVANCE: The newly available super-fast set polyether offers a great potential for a reduced chair side time and comfort for both, the patient and the dentist. Super quick polyether showed as well improved tear strength, which is considered one of the shortcomings of the regular set polyether. In addition, the new polyether was as accurate as the regular set polyether and with good elastic recovery.


Subject(s)
Dental Impression Materials , Siloxanes , Humans , Polyvinyls , Materials Testing
12.
J Mech Behav Biomed Mater ; 141: 105764, 2023 05.
Article in English | MEDLINE | ID: mdl-36965216

ABSTRACT

Temporomandibular joint disorder (TMD) often coincides with malocclusion, and in some cases TMDs are reported after orthodontic treatment. Intermaxillary elastics (also known as orthodontic elastics, OE) are a common way to apply force during orthodontic treatment, and they might cause mechanical effects on the temporomandibular joint (TMJ), thereby lead to joint remodeling. It is still a controversial topic whether the adapted remodeling of the TMJ or of the alveolar bone is the main cause for the alteration of occlusion after treatment with OEs. It was the aim of this study to analyze whether variations of OEs would develop harmful effects on the healthy TMJ. A TMJ model with a masticatory system based on Hill-type muscle actuators was established. Mouth opening and closure with and without OEs were simulated, and maximum principal stresses in the disc and condylar cartilage as well as the displacement of the mandible were analyzed. We found no considerably difference in the mandibular movement without and with symmetrical OEs during mouth opening and closing. At full mouth opening, stresses in the disc and condylar cartilage of some models with OEs were much smaller than without OEs, but we did not find consistency in the results from the left and right sides of the same model (e.g. the lowest compressive stress on the left side of disc from the model with Class II OEs is much smaller than without OEs, -17.3 MPa compared with -28.2, while on the right side, there was no obvious difference). Hence, we could not conclude that OEs would develop deleterious effects on the healthy TMJ.


Subject(s)
Temporomandibular Joint Disc , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint/physiology , Mandible , Movement , Mandibular Condyle
13.
J Mech Behav Biomed Mater ; 140: 105741, 2023 04.
Article in English | MEDLINE | ID: mdl-36857974

ABSTRACT

OBJECTIVES: To investigate in a numerical study the effect of the geometry and the extension of orthodontic aligner edges and the aligner thickness on force transmission to upper right central incisor tooth (Tooth 11). METHODS: A three-dimensional (3D) digital model, obtained from a 3D data set of a complete dentulous maxilla, was imported into 3-matic software. Aligners with four different trimming line designs (scalloped, straight, scalloped extended, straight extended) were designed, each with four different thicknesses (0.3, 0.4, 0.5, and 0.6 mm). The models were exported to a finite element (FE) software (Marc/Mentat). A facial 0.2 mm bodily malposition of tooth 11 was simulated. RESULTS: The maximum resultant force was in the range of (7.5 - 55.2) N. The straight trimming designs had higher resultant force than the scalloped designs. The resultant force increases with increasing the edge extension of the aligner. The normal contact forces were unevenly distributed over the entire surface and were concentrated in six areas: Incisal, Mesio-Incisal, Disto-Incisal, Middle, Mesio-Cervical, and Disto-Cervical. The resultant force increases super linearly with increasing thickness. CONCLUSIONS: The design of the trimming line, the edge extension, and the thickness of the aligner affect significantly the magnitude of the resultant force and the distribution of normal contact force. The straight extended trimming design exhibited better force distribution that may favor a bodily tooth movement. CLINICAL RELEVANCE: A straight extended trimming design of an orthodontic aligner may improve the clinical outcomes. In addition, the manufacturing procedures of the straight design are much simpler compared to the scalloped design.


Subject(s)
Mechanical Phenomena , Orthodontic Appliance Design , Finite Element Analysis , Software , Maxilla
14.
Clin Oral Investig ; 27(2): 797-805, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36625961

ABSTRACT

OBJECTIVE: To identify tooth mobility (TM) by time-dependent tooth displacement using an electronic intra-oral loading device (ILD) in periodontally healthy and periodontally compromised patients. MATERIALS AND METHODS: Twenty-eight untreated periodontitis and 20 periodontally healthy patients [25 female and 26 male; ages: 20-81 years], contributing with 68 teeth (periodontitis: nteeth = 28; non-periodontitis: nteeth = 40), participated in the study. TM was measured in vivo by displacing central or lateral incisors to a maximum of 0.2 mm orally over durations of 0.5 s, 1 s, and 10 s with the ILD. The maximum force (Fmax) was extracted from the measured force/deflection curves for every single measurement. RESULTS: Differences in TM-ILD values were found for periodontitis as compared to non-periodontitis patients derived from the same loading durations (differences of 3.9 (0.5 s), 3.1 (1 s), 2.8 (10 s), (95% CI for 0.5 s (1.2-6.7), p = 0.024; 1 s (1.4-6.0), p = 0.067; 10 s (0.2-5.3), p = 0.001), rejecting the null hypothesis of no difference (T-test) for durations of 0.5 and 10 s. There was a significant correlation of TM-ILD (Fmax) with BOP at 0.5 s (- 0.52) and with attachment loss at all time durations (- 0.47 at 0.5 s; - 0.57 at 1 s; - 0.47 at 10 s). CONCLUSIONS: This clinical investigation could demonstrate that time-dependent tooth displacements using a new computerized electronic device were associated with attachment loss and bleeding on probing. CLINICAL RELEVANCE: ILD can improve the monitoring of tooth mobility, as TM-ILD values reflect qualitative (inflammatory status interpreted by BOP) and quantitative parameters (interpreted as the amount of CAL loss) of periodontal disease.


Subject(s)
Periodontal Diseases , Periodontitis , Tooth Mobility , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Periodontitis/complications , Periodontium , Periodontal Diseases/complications , Incisor , Periodontal Attachment Loss
15.
J Dent ; 130: 104425, 2023 03.
Article in English | MEDLINE | ID: mdl-36646269

ABSTRACT

OBJECTIVES: The present study aimed to evaluate the accuracy (trueness and precision) of titanium and zirconia multi-rooted root analogue implants (RAIs) manufactured by milling and 3D-printing. METHODS: A multi-rooted RAI was designed based on a mandibular second molar segmented from cone-beam computed tomography (CBCT). The manufactured RAIs were divided into four groups: 3D-printed titanium (PT) and 3D-printed zirconia (PZ) (n=10 each), as well as milled titanium (MT) and milled zirconia (MZ) (n=5 each). The specimens were scanned with a high-precision scanner, and the scanned data were imported into 3D-measurement software to evaluate the precision and trueness of each group. Root mean square (RMS) deviations were measured and statistically analysed (One-way ANOVA, Tukey's, p≤0.05). RESULTS: PZ showed the highest precision with RMS value of 21±6 µm. Nevertheless, there was no statistically significant difference in precision among the other groups. Regarding trueness, MZ showed the highest trueness with RMS value of 66±3 µm, whereas MT showed the lowest trueness result. Inspection sections showed that MT had significantly high RMS deviation in the furcation area (612±64 µm), whereas PZ showed significantly high RMS deviation at the apical area (197±17 µm). CONCLUSIONS: The manufacturing process significantly influenced the RAI accuracy. PZ exhibited the highest precision, whereas MZ exhibited the highest trueness, followed by PT. Finally, our results suggest that 3D-printing can reproduce concave surfaces and less accessible areas better than milling. CLINICAL SIGNIFICANCE: Milled and 3D-printed RAIs showed promising results in terms of precision and trueness. However, further clinical research is needed to advocate their use as immediate implants. Additionally, the inherent volumetric changes of the various materials during manufacturing should be considered.


Subject(s)
Computer-Aided Design , Titanium , Printing, Three-Dimensional , Zirconium
16.
J Biomed Mater Res B Appl Biomater ; 111(1): 7-15, 2023 01.
Article in English | MEDLINE | ID: mdl-35796311

ABSTRACT

Small fracture treatment includes the use of so-called "Herbert screws". In the past years, novel resorbable materials were introduced as an alternative to the classical titanium implants. The purpose of this study was to evaluate the influence of ongoing resorption/corrosion processes on the mechanical stability screws made from the magnesium alloy MgYREZr®. Our samples consisted of two partly resorbed screws, explanted due to medical reasons after 6 and 12 weeks, respectively, and five unused reference screws. We performed three-point bending tests to determine the stability of all screws. Additionally, with FE-models of the screws based on µCT-scans, we investigated whether any differences in the bending behavior of the screws can be attributed to the reduction of the material volume due to resorption alone. Both partly resorbed screws failed at a lower force than the reference screws (178.6 ± 5.5 N for the reference screws, 72.5 N and 74.5 N for the screw explanted after 6 and 12 weeks, respectively). FE simulations performed with the three different geometries and original material parameters (Young's modulus Enew  = 45 GPa, yield limit σnew  = 235 MPa) showed that the early fracture could not be attributed to the changed geometry alone. Material parameters for the partly resorbed screws were determined by fitting the numerical to the experimental force-displacement curves (E6week  = 15 GPa, σ6week  = 135 MPa and E12week  = 8 GPa, σ12week  = 135 MPa, respectively). Our results showed that both geometry of the screws and different material properties contribute to the overall stability. Understanding and controlling these two factors throughout the resorption process could enhance treatment options.


Subject(s)
Alloys , Magnesium , Bone Screws , Absorbable Implants , Titanium
17.
Clin Oral Investig ; 27(1): 115-124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35989373

ABSTRACT

OBJECTIVES: To design a finite element (FE) model that might facilitate understanding of the complex mechanical behavior of orthodontic aligners. The designed model was validated by comparing the generated forces - during 0.2-mm facio-lingual translation of upper left central incisor (Tooth 21) - with the values reported by experimental studies in literature. MATERIALS AND METHODS: A 3D digital model, obtained from scanning of a typodont of upper jaw, was imported into 3-matic software for designing of aligners with different thicknesses: 0.4, 0.5, 0.6, 0.7 mm. The model was exported to Marc/Mentat FE software. Suitable parameters for FE simulation were selected after a series of sensitivity analyses. Different element classes of the model and different rigidity values of the aligner were also investigated. RESULTS: The resultant maximum forces generated on facio-lingual translation of Tooth 21 were within the range of 1.3-18.3 N. The force was direction-dependent, where lingual translation transmitted higher forces than facial translation. The force increases with increasing the thickness of the aligner, but not linearly. We found that the generated forces were almost directly proportional to the rigidity of the aligner. The contact normal stress map showed an uneven but almost repeatable distribution of stresses all over the facial surface and concentration of stresses at specific points. CONCLUSIONS: A validated FE model could reveal a lot about mechanical behavior of orthodontic aligners. CLINICAL RELEVANCE: Understanding the force systems of clear aligner by means of FE will facilitate better treatment planning and getting optimal outcomes.


Subject(s)
Orthodontic Appliance Design , Tooth Movement Techniques , Finite Element Analysis , Computer Simulation , Computers
18.
J Dent ; 125: 104276, 2022 10.
Article in English | MEDLINE | ID: mdl-36055460

ABSTRACT

OBJECTIVES: To investigate how the stress distribution and forces transmitted from orthodontic aligners to the tooth surface are affected by the geometry and extension of the trimming line. MATERIALS AND METHODS: Thirty-six aligners were thermoformed from Zendura FLX sheets (0.75 mm thick) and divided into four groups based on the design of the trimming line: Scalloped, Scalloped extended, Straight and Straight extended. Fuji pressure-sensitive films were used for pressure measurement. The pressurized films were scanned and evaluated. Pressures and forces were measured over the entire facial surface of an upper right central incisor (Tooth 11) and at 7 different locations [cervical, middle, incisal, mesio-incisal, mesio-cervical, disto-incisal, and disto-cervical]. In addition, the thickness of the aligners at these 7 sites was measured with a digital caliper. RESULTS: The active force ranged from (2.2 to 6.9) N, and the average pressure was (1.6-2.7) MPa. The highest values were recorded for the (straight extended) design, while the lowest values were recorded for the scalloped design. The forces and stresses were not uniformly distributed over the surface. When the values in each area were compared separately, significant differences were found between the different designs in the cervical area, with the scalloped design transmitting the lowest cervical forces. Aligner thickness was drastically reduced (60-75% thinning) over the entire tooth surface after thermoforming. CONCLUSIONS: The straight extended design of aligner's trimming line exhibited more uniform force transfer and stress distribution across the surface than the other designs. CLINICAL RELEVANCE: The trimming line design could have a significant impact on the clinical outcome of orthodontic aligner treatment.


Subject(s)
Orthodontic Appliance Design , Tooth Movement Techniques , Cuspid , Incisor
19.
Dental Press J Orthod ; 27(3): e2220489, 2022.
Article in English | MEDLINE | ID: mdl-35792791

ABSTRACT

OBJECTIVE: To evaluate, in-vitro, the change in crown inclination that occurs during orthodontic leveling and alignment using different archwire-bracket-ligation combinations. MATERIALS AND METHODS: Four archwire types were tested: (1) 0.012-in stainless steel and (2) 0.0155-in stainless steel multi-stranded, (3) 0.012-in nitinol Orthonol® and (4) 0.012-in nitinol Thermalloy®. Combinations with five types of 0.022-in slot orthodontic brackets were tested: SmartClipTM and Time3® self-ligating brackets, Mini-Taurus® and Victory SeriesTM conventional brackets, and Synergy® conventional-low friction bracket. Conventional brackets were ligated with both stainless steel and elastomeric ligatures. The simulated malocclusion comprised 2.0mm gingival and 2.0mm labial displacements of a maxillary right central incisor. Rotation around the Y-axis (representing labio-palatal inclination) was measured for the different archwire-bracket-ligation combinations. RESULTS: The largest rotation was measured whith Orthonol® and Thermalloy® wires when combined with SmartClipTM brackets (8.07±0.24º and 8.06±0.26º, respectively) and with Synergy® brackets ligated with stainless steel ligatures (8.03±0.49º and 8.0±0.37º, respectively). The lower rotation was recorded when Thermalloy®, multi-stranded, and Orthonol® wires were ligated with elastomeric rings to Mini-Taurus® brackets (1.53±0.18º, 1.65± 0.23º and 1.70±0.28º, respectively) and to Victory SeriesTM brackets (1.68± 0.78º, 2.92± 1.40º and 1.74±0.46º, respectively). CONCLUSIONS: All archwire-bracket-ligation combinations produced lingual crown inclination; however, lower changes were observed when the conventional brackets were ligated with elastomeric rings. The multi-stranded archwire produced less rotation with nearly every bracket-ligation combination, compared to the other archwires. The effect of the archwire-bracket-ligation combination on tooth inclination during leveling and alignment should be considered during planning treatment mechanics.


Subject(s)
Orthodontic Appliance Design , Orthodontic Wires , Crowns , Dental Alloys , Oxygen Isotopes , Stainless Steel , Stress, Mechanical , Surface Properties , Titanium , Tooth Movement Techniques
20.
Dent Mater ; 38(7): 1128-1139, 2022 07.
Article in English | MEDLINE | ID: mdl-35618552

ABSTRACT

OBJECTIVE: This interlaboratory round robin test investigated the robustness of the Chevron-Notch Beam (CNB) test method and the effect of the processing and testing variations on the fracture toughness of a dental 3Y-TZP ceramic. METHODS: The round robin test was performed precisely following the procedures recommended in ISO 24370:2005 and applied on a commercial 3Y-TZP ceramic (product information). A total of 335 test specimens with dimensions 3×4 x 45 mm³ was equally distributed among 10 participating laboratories of varying experience in fracture toughness testing. A standard operating procedure was defined with either narrow processing tolerances or alternative (wider) processing tolerances (as proposed in ISO 24370). Fracture toughness data (series 2) was analyzed using one way ANOVA followed by post hoc Tukey HSD test and 95% Confidence Intervals (CI) were computed (p < 0.05). A further, preceding round-robin (series 1) test was conducted with - more possible variations of test conditions regarding CNB notch processing and storage conditions. Those results are summarized in the supplement and discussed with the actual ISO 24370 test. RESULTS: Fracture toughness of the 3Y-TZP ceramic material, summarized over all laboratories was measured to KIc = 4.48 ± 0.11 MPam0.5 for the standard processing tolerance and KIc = 4.55 ± 0.31 MPam0.5 for the alternative tolerance. The results revealed a significant influence of cutting offset and notch geometry on KIc when using CNB method. The test medium also has a significant influence on KIc in terms of reduced fracture toughness under the influence of water. With defined testing conditions the number of valid tests and reduced standard deviation increased. In case of strictly following such standard operation procedures, KIc can be determined with high reliability. There is no difference between the involved laboratories, but significant influence of cutting offset on KIC was observed. SIGNIFICANCE: The CNB method is suitable method for determination of KIc on fine-grained ceramics such as 3Y-TZP ceramic. By using tighter tolerances for processing and testing, i.e. closely following the ISO 24370 procedure, a highly-precise evaluation of fracture toughness with low data variation is achievable. The information of the storage medium should always be reported along with the data. CNB fracture toughness testing is an alternative method compared to Single-edge V-notch beam (SEVNB), especially for fine-grained ceramics.


Subject(s)
Ceramics , Zirconium , Dental Materials , Materials Testing/methods , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...